Drug discovery involves the translation of advances in the understanding of the biology of diseases into medicines to treat a huge variety of medical conditions. It is a complex process, involving a wide range of scientific disciplines such as molecular biology and medicinal chemistry, as well as clinicians and business experts.

Who’s involved?
- Molecular Biologists
- Biochemists
- Geneticists
- Medicinal Chemists
- Chemical Biologists
- Biotechnologists
- Chemoinformaticians
- Process Chemists
- Pharmaceutical Scientists
- Clinicians
- Pharmacologists
- Biostatisticians
- Regulatory affairs experts
- Business developers

Objective
- Understanding how disease works in the body, by tracking the disease down to its cellular level of action
- To study the efficacy and safety of candidate drugs, providing evidence to support introduction into clinical practice, passing both patent and international regulation
- A new drug that treats a disease for which no therapy exists already or that could potentially improve on existing therapies

Research outcome
- Identification of potential molecular targets against which new drugs can be developed
- Creation and optimization of molecules that modulate disease targets and show therapeutic effects in disease models, with a sufficient safety margin
- A new drug that treats a disease for which no therapy exists already or that could potentially improve on existing therapies

Communication
- Read and publish protocols, methods, reviews and research in journals like *Nature* or *Nature Cancer*, or databases like SN Experiments
- Read and publish content from journals like *Nature Reviews Drug Discovery* and *Nature Biotechnology*, or in databases like AdisInsights
- Read and publish their own and others’ findings in journals such as *Nature Medicine*, *Nature Reviews Clinical Oncology* and *Nature Reviews Drug Discovery*