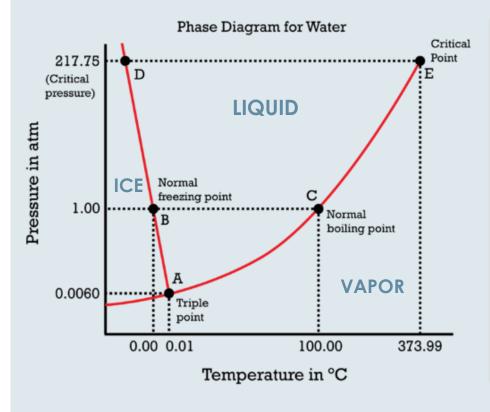

SpringerMaterials Phase Diagram – use cases

February 2020


Description Springer Materials

Outline

What is a **phase diagram**?

PHASE DIAGRAMS & THEIR IMPORTANCE IN MATERIALS RESEARCH

Phase diagrams help us to understand the physical state of materials under certain conditions.

- They are **indispensable** for anyone working with alloys and in designing new materials.
- But, phase diagrams are hard to find in published literature.
- Assessing which phase diagrams are the most trustworthy require an expert's evaluation which is not always easily available.

Why do we use them?

The use of phase diagrams allows Research & Development, and production to be done **more efficiently** and **cost effectively**

FABRICATION INTO USEFUL CONFIGURATIONS

Phase diagrams are invaluable for tailoring existing alloys to **avoid overdesign** in current applications.

DEVELOPMENT OF NEW ALLOYS

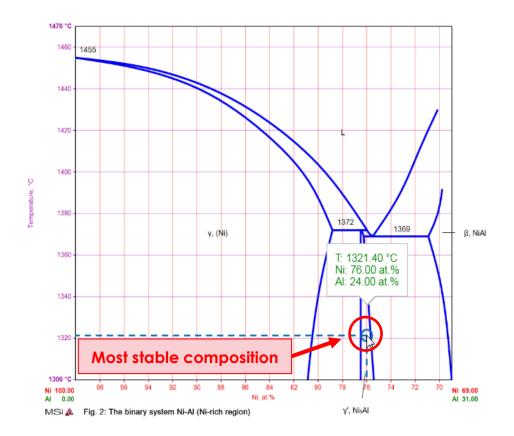
Phase diagrams are used to design alloys for **new** or **specialized applications** and to develop alternative alloys to replace those containing scarce, expensive, hazardous, or "critical" alloying elements.

DESIGN & CONTROL OF HEAT TREATMENTS

Phase diagrams are particularly useful in controlling heat treatment solutions to **prevent damage** caused by incipient melting, and developing new processing technology.

SOLVING PROBLEMS OF ALLOY PERFORMANCE

Try as we might, we don't always get the manufacturing process right. Phase diagrams can be used to analyze current compositions of alloys to **determine where performance problems lie**. 3

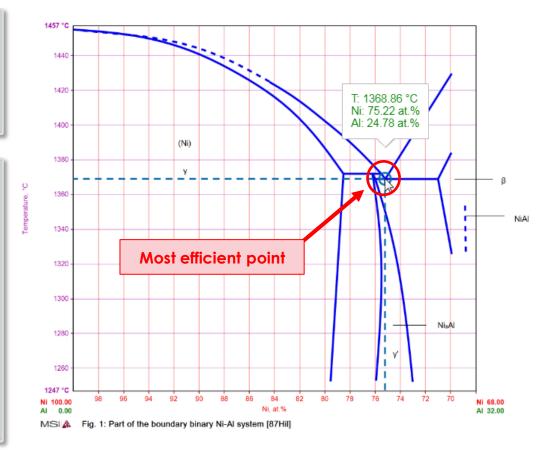


Designing new materials

Search by Elements: select Al - Ni, refine by "phase diagram" under properties

THE SCENARIO: we want to create a nickel-based **superalloy** for a gas turbine engine, to use in either **aircraft or utility gas turbines** for electric power.

- Gas turbines experience high temperatures and require high strength and creep resistance properties.
- The Ni-Al phase diagram helps a researcher decide the best and most stable composition.
- In this case the composition of Ni₃Al Υ' region has a structure that is stable up to 1372 °C.

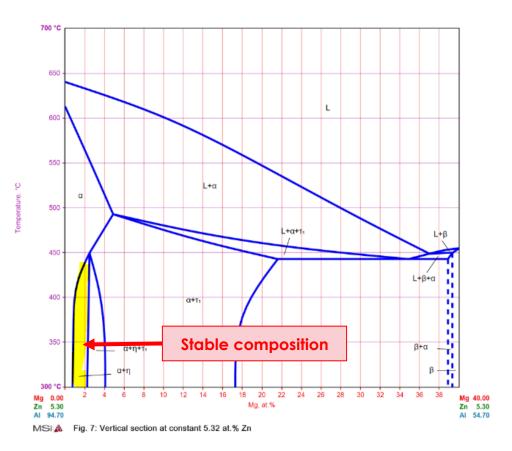


Determining the best manufacturing conditions

Search by Elements: select Ni - Al, refine by "phase diagram" under properties

THE SCENARIO: we want to create an alloy with 75% Ni and 24% AI, the minimum temperature at which these two will combine to form an alloy is 1368 ° C

- Phase diagrams allow you to determine the most efficient conditions for manufacturing alloys – this saves the manufacturer on energy costs
- At this temperature and composition of **Ni and AI**, the materials immediately turn into a **solid** without a long time to cool down so, if it needs to be cast into a die, it can be done around this temperature.

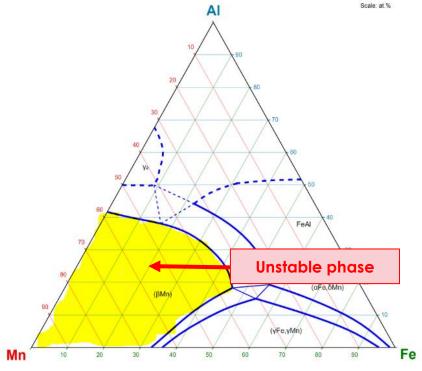


Choosing the best materials for your project

Search by Elements: select Al - Mg - Zn, refine by "phase diagram" under properties

THE SCENARIO: we want to create an **aluminum alloy** to make **seatbelt hinges** and **automobile bumpers**. This alloy should be corrosion resistant, have good weldability, and high strength.


- These properties can be obtained by adding **Zinc** and **Magnesium** to **Aluminum**.
- A good candidate for such a material should also have a combination of two distinct phases (a and η) in its structure. The permissible compositions can be found in the phase diagram for Al-Zn-Mg (yellow region)
- **A7003 aluminum alloy** has the right combination Al-Zn-Mn and can be used for these applications.



Designing materials that won't fail

Search by Elements: select Al – Fe – Mn, refine by "phase diagram" under properties

- Alloys used to for high temperature applications contain Manganese (Mn) in them as it provides:
 - High strength
 - High resistance to corrosion
 - Good welding characteristics
 - Makes alloys easier to cast
- However, Mn has an unstable phase (β Mn) at higher temperatures that can lead to cracks and failure of parts.
- Phase diagrams allow you to determine the alloy composition that will fail under high temperatures

MSI 🎄 Fig. 6: Partial isothermal section at 800°C